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a b s t r a c t

The Eshelby-type problem of an arbitrary-shape polyhedral inclusion embedded in an

infinite homogeneous isotropic elastic material is analytically solved using a simplified

strain gradient elasticity theory (SSGET) that contains a material length scale para-

meter. The Eshelby tensor for a polyhedral inclusion of arbitrary shape is obtained in a

general analytical form in terms of three potential functions, two of which are the same

as the ones involved in the counterpart Eshelby tensor based on classical elasticity.

These potential functions, as volume integrals over the polyhedral inclusion, are

evaluated by dividing the polyhedral inclusion domain into tetrahedral duplexes, with

each duplex and the associated local coordinate system constructed using a procedure

similar to that employed by Rodin (1996. J. Mech. Phys. Solids 44, 1977–1995). Each of

the three volume integrals is first transformed to a surface integral by applying the

divergence theorem, which is then transformed to a contour (line) integral based on

Stokes’ theorem and using an inverse approach different from those adopted in the

existing studies based on classical elasticity. The newly derived SSGET-based Eshelby

tensor is separated into a classical part and a gradient part. The former contains

Poisson’s ratio only, while the latter includes the material length scale parameter

additionally, thereby enabling the interpretation of the inclusion size effect. This SSGET-

based Eshelby tensor reduces to that based on classical elasticity when the strain

gradient effect is not considered. For homogenization applications, the volume average

of the new Eshelby tensor over the polyhedral inclusion is also provided in a general

form. To illustrate the newly obtained Eshelby tensor and its volume average, three

types of polyhedral inclusions – cubic, octahedral and tetrakaidecahedral – are

quantitatively studied by directly using the general formulas derived. The numerical

results show that the components of the SSGET-based Eshelby tensor for each of the

three inclusion shapes vary with both the position and the inclusion size, while their

counterparts based on classical elasticity only change with the position. It is found that

when the inclusion is small, the contribution of the gradient part is significantly large

and should not be neglected. It is also observed that the components of the averaged

Eshelby tensor based on the SSGET change with the inclusion size: the smaller the

inclusion, the smaller the components. When the inclusion size becomes sufficiently

large, these components are seen to approach (from below) the values of their classical

elasticity-based counterparts, which are constants independent of the inclusion size.
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1. Introduction

Eshelby’s (1957, 1959) solution for the problem of an infinite homogeneous isotropic elastic material containing an
ellipsoidal inclusion prescribed with a uniform eigenstrain is a milestone in micromechanics. The solution for the dynamic
Eshelby ellipsoidal inclusion problem was obtained by Michelitsch et al. (2003), which reduces to the Eshelby solution in
the static limiting case. Both of these solutions are based on classical elasticity. Recently, the Eshelby ellipsoidal inclusion
problem was solved by Gao and Ma (2010b) using a simplified strain gradient elasticity theory, which recovers Eshelby’s
(1957, 1959) solution when the strain gradient effect is not considered.

A remarkable property of Eshelby’s (1957) solution is that the Eshelby tensor, which is a fourth-order strain
transformation tensor directly linking the induced strain to the prescribed uniform eigenstrain, is constant inside the
inclusion. However, this property is true only for ellipsoidal inclusions (and when classical elasticity is used), which is
known as the Eshelby conjecture (e.g., Eshelby, 1961; Rodin, 1996; Markenscoff, 1998a,b; Lubarda and Markenscoff, 1998;
Liu, 2008; Li and Wang, 2008; Gao and Ma, 2010b; Ammari et al., 2010).

For non-ellipsoidal polyhedral inclusions, Rodin (1996) provided an algorithmic analytical solution and showed that
Eshelby’s tensor cannot be constant inside a polyhedral inclusion, thereby proving the Eshelby conjecture in the case of
polyhedral inclusions. The expressions of Eshelby’s tensor for two-dimensional (2-D) polygonal inclusions were included
in Rodin (1996). The explicit expressions of the Eshelby tensor for three-dimensional (3-D) polyhedral inclusions were
later derived by Nozaki and Taya (2001), where an exact solution for the stress field inside and outside an arbitrary-shape
polyhedral inclusion was obtained and numerical results for five regular polyhedral inclusion shapes and three other
shapes of the icosidodeca family were presented. Both Rodin (1996) and Nozaki and Taya (2001) made use of an algorithm
developed by Waldvogel (1979) for evaluating the Newtonian (harmonic) potential over a polyhedral body. A more
compact form of the Eshelby tensor than that presented in Nozaki and Taya (2001) for a polyhedral inclusion in an infinite
elastic space was proposed by Kuvshinov (2008) using a coordinate-invariant formulation, where problems of polyhedral
inclusions in an elastic half-space and bi-materials were also investigated. In addition, specific analytical solutions have
been obtained for polyhedral inclusions of simple shapes such as cuboids (e.g., Chiu, 1977; Lee and Johnson, 1978; Liu and
Wang, 2005) and pyramids (e.g., Pearson and Faux, 2000; Glas, 2001; Nenashev and Dvurechenskil, 2010). Also, illustrative
results have been provided for dynamic Eshelby problems of cubic and triangularly prismatic inclusions along with
spherical and ellipsoidal ones by Wang et al. (2005) using their general solution for the dynamic Eshelby problem for
inclusions of various shapes.

However, these existing studies on polyhedral inclusion problems are all based on the classical elasticity theory, which does
not contain any material length scale parameter. As a result, the Eshelby tensors obtained in these studies and the subsequent
homogenization methods cannot capture the inclusion (particle) size effect on elastic properties exhibited by particle–matrix
composites (e.g., Vollenberg and Heikens, 1989; Cho et al., 2006; Marcadon et al., 2007). Solutions for polyhedral inclusion
problems are also important for describing interpenetrating phase composites reinforced by 3-D networks (e.g., Poniznik et al.,
2008; Jhaver and Tippur, 2009) and for understanding semiconductor materials buried with quantum dots that are typically
polyhedral-shaped (e.g., Kuvshinov, 2008; Nenashev and Dvurechenskil, 2010). These materials often exhibit microstructure-
dependent size effects whose interpretation requires the use of higher-order continuum theories.

In this paper, the Eshelby-type inclusion problem of a polyhedral inclusion prescribed with a uniform eigenstrain and a
uniform eigenstrain gradient and embedded in an infinite homogeneous isotropic elastic material is solved using a
simplified strain gradient elasticity theory (SSGET) (e.g., Gao and Park, 2007), which contains a material length scale
parameter and can describe size-dependent elastic deformations. The Eshelby tensor is analytically obtained in terms of
three potential functions, two of which are the same as the ones involved in the counterpart Eshelby tensor based on
classical elasticity. These potential functions, as three volume integrals over the polyhedral inclusion, are evaluated by
dividing the polyhedral inclusion domain into tetrahedral duplexes. Each duplex and the associated local coordinate
system are constructed using a procedure similar to that developed by Rodin (1996) based on the algorithm proposed in
Waldvogel (1979). Each of the three volume integrals is first transformed to a surface integral by applying the divergence
theorem, which is then transformed to a contour (line) integral based on Stokes’ theorem and using an inverse approach
different from those employed in the existing studies for evaluating the two integrals involved in the classical elasticity-
based Eshelby tensor for a polyhedral inclusion.

The rest of this paper is organized as follows. In Section 2, the general form of the Eshelby tensor for a 3-D arbitrary-
shape inclusion based on the SSGET is presented in terms of three potential functions (volume integrals). The expressions
of the SSGET-based Eshelby tensor for a polyhedral inclusion of arbitrary shape are analytically derived in Section 3, which
is separated into a classical part and a gradient part. The averaged Eshelby tensor over the inclusion volume is also
analytically evaluated there. Numerical results are provided in Section 4 to quantitatively illustrate the position and
inclusion size dependence of the newly obtained Eshelby tensor for the polyhedral inclusion problem. The paper concludes
in Section 5.

2. Eshelby tensor based on the SSGET

The SSGET is the simplest strain gradient elasticity theory evolving from Mindlin’s pioneering work. It is also known as
the first gradient elasticity theory of Helmholtz type and the dipolar gradient elasticity theory (e.g., Gao and Ma, 2010a).
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According to the SSGET (Gao and Park, 2007; Gao and Ma, 2010a), the Navier-like displacement equations of equilibrium are
given by

ðlþmÞui,ijþmuj,kk�L2
½ðlþmÞui,ijþmuj,kk�,mmþ f j ¼ 0 in O, ð1Þ

and the boundary conditions have the form:

sijnj�ðmijkn
k
Þ,jþðmijkn

k
nlÞ,lnj ¼ ti or ui ¼ ui

mijknjnk ¼ qi or ui,lnl ¼
@ui

@n

9=
; on @O, ð2Þ

where l and m are the Lamé constants in classical elasticity, L is a material length scale parameter, ui are the components of the
displacement vector, fi are the components of the body force vector (force per unit volume), sij are the components of the total
stress, r¼sijei�ej, mijk are the components of the double stress, l¼mijkei�ej�ek, and ti and qi are, respectively, the components
of the Cauchy traction vector and double stress traction vector. Also, in Eqs. (1) and (2), O is the region occupied by the
elastically deformed material, @O, is the smooth bounding surface of O, ni is the outward unit normal vector on @O, and the
overhead bar represents the prescribed value. In addition,

mijk ¼ L2tij,k ¼ mjik, sij � tij�mijk,k ¼ tij�L2tij,kk ¼ sji, ð3Þ

where tij are the components of the Cauchy stress, s¼tijei�ej.
When the strain gradient effect is not considered (i.e., L¼0), mijk¼0 and sij¼tij (see Eq. (3)), and Eqs. (1) and (2) reduce

to the governing equations and the boundary conditions in terms of displacement in classical elasticity (e.g., Timoshenko
and Goodier, 1970; Gao and Rowlands, 2000).

Note that the standard index notation, together with the Einstein summation convention, is used in Eqs. (1), (2) and (3)
and throughout this paper, with each Latin index (subscript) ranging from 1 to 3 unless otherwise stated.

Solving Eq. (1), subject to the boundary conditions of ui and their first, second and third derivatives vanishing at infinity,
gives the fundamental solution and Green’s function based on the SSGET. By using 3-D Fourier and inverse Fourier
transforms, the fundamental solution of Eq. (1) has been obtained as (Gao and Ma, 2009)

uiðxÞ ¼
ZZZ þ1
�1

Gijðx�yÞf jðyÞdy, ð4Þ

where x is the position vector of a point in the infinite 3-D space, y is the integration point, and Gij( � ) is Green’s function
(a second-order tensor) given by

GijðxÞ ¼
1

16pmð1�vÞ
½AðxÞdij�BðxÞ,ij�, ð5Þ

with

AðxÞ � 4ð1�vÞ
1

x
1�e�x=L
� �

, BðxÞ � xþ
2L2

x
�

2L2

x
e�x=L: ð6Þ

When L¼0, Eqs. (5) and (6) reduce to the Green’s function for 3-D problems in classical elasticity (e.g., Li and Wang, 2008). In Eqs.
(5) and (6), v is Poisson’s ratio, which is related to the Lamé constants l and m through (e.g., Timoshenko and Goodier, 1970)

l¼
Ev

ð1þvÞð1�2vÞ
, m¼ E

2ð1þvÞ
, ð7Þ

where E is Young’s modulus.
By using the Green’s function method entailing Eqs. (4), (5) and (6), the general expressions of the Eshelby tensor based

on the SSGET can then be obtained, as summarized below.
Consider the problem of a 3-D inclusion of arbitrary shape embedded in an infinite homogenous isotropic elastic body.

The inclusion is prescribed with a uniform eigenstrain en and a uniform eigenstrain gradient jn. There is no body force or
any other external force acting on the elastic body. The disturbed strain, eij, induced by en and jn can be shown to be (Gao
and Ma, 2009, 2010b)

eij ¼ SijklenklþTijklmkn

klm, ð8Þ

where Sijkl is the fourth-order Eshelby tensor having 36 independent components, and Tijklm is a fifth-order Eshelby-like
tensor with 108 independent components. Eq. (8) shows that e (¼eijei�ej) is solely linked to e* in the absence of jn (i.e.,
the classical case) and is fully related to jn when en¼0. The fourth-order Eshelby tensor has been obtained as

Sijkl ¼ SC
ijklþSG

ijkl, ð9aÞ

SC
ijkl ¼

1

8pð1�vÞ
½F,ijkl�2vL,ijdkl�ð1�vÞðL,ljdikþL,kjdilþL,lidjkþL,kidjlÞ�, ð9bÞ

SG
ijkl ¼

1

8pð1�vÞ
½2vG,ijdklþð1�vÞðG,jldikþG,ildjkþG,jkdilþG,ikdjlÞþ2L2

ðL,ijkl�G,ijklÞ�, ð9cÞ

X.-L. Gao, M.Q. Liu / J. Mech. Phys. Solids 60 (2012) 261–276 263



where SC
ijkl is the classical part, SG

ijkl is the gradient part, dij is the Kronecker delta, and

FðxÞ ¼
Z
O
9x�y9dy, ð10aÞ

LðxÞ ¼
Z
O

1

9x�y9
dy, ð10bÞ

GðxÞ ¼
Z
O

e�9x�y9=L

9x�y9
dy ð10cÞ

are three scalar-valued potential functions that can be obtained analytically or numerically by evaluating the volume
integrals over the domain O occupied by the inclusion, with 9x9¼x¼(xkxk)1/2 and y (AO) being the integration variable.
Note that the first two potential functions given in Eqs. (10a) and (10b) are the same as the ones involved in the Eshelby
tensor based on classical elasticity (e.g., Mura, 1987; Nemat-Nasser and Hori, 1999; Li and Wang, 2008), whereas the third
one defined in Eq. (10c) results from the use of the SSGET. It should be mentioned that F(x) in Eq. (10a) and L(x) in
Eq. (10b) are, respectively, known to be a biharmonic potential and a Newtonian potential (e.g., Li and Wang, 2008), while
a variant of G(x) in Eq. (10c) is called the Yukawa potential in physics (e.g., Rowlinson, 1989).

Eqs. (10a), (10b) and (10c) show that among the three potential functions, only the third one, G(x), involves the length
scale parameter L. It then follows from Eqs. (9c), (10b) and (10c) that SG

ijkl depends on L, while SC
ijkl, expressed in terms of

L(x) and F(x) only according to Eqs. (9b), (10a) and (10b), is independent of L. Also, it is seen from Eqs. (9c), (10b) and
(10c) that SG

ijkl¼0 when L¼0 (and thus G(x)�0), thereby giving Sijkl ¼ SC
ijkl (from Eq. (9a)). That is, the Eshelby tensor derived

using the SSGET reduces to that based on classical elasticity when the strain gradient effect is not considered.
The fifth-order Eshelby-like tensor T, which relates the eigenstrain gradient jn to the disturbed strain e in the elastic

body (see Eq. (8)), can be shown to be

Tijklm ¼
L2

8pð1�vÞ
½2vC,ijmdklþð1�vÞðC,lmidjkþC,lmjdikþC,kmidjlþC,kmjdilÞ�P,ijklm�, ð11Þ

where

CðxÞ �L�G, PðxÞ �Fþ2L2
ðL�GÞ, ð12a;bÞ

with the scalar-valued potential functions F(x), L(x) and G(x) defined in Eqs. (10a), (10b) and (10c). It is clear from
Eq. (11) that T vanishes when L¼0. Then, with Sijkl ¼ SC

ijkl as discussed above, Eq. (8) simply becomes eij ¼ SC
ijklenkl when L¼0,

which is the defining relation for the Eshelby tensor based on classical elasticity (Eshelby, 1957), as expected.
Eqs. (9a), (9b), (9c) and (11) provide the general formulas for determining Sijkl ð ¼ SC

ijklþSG
ijklÞ and Tijklm for an inclusion of

arbitrary shape in terms of the potential functions L(x), F(x) and G(x) defined in Eqs. (10a), (10b) and (10c). For the cases
of a spherical inclusion, a cylindrical inclusion and an ellipsoidal inclusion in an infinite elastic medium, analytical
expressions have been obtained for L(x), F(x) and G(x) and thus for the Eshelby tensor (Gao and Ma, 2009, 2010b; Ma and
Gao, 2010). The more complex case of a polyhedral inclusion of arbitrary shape, for which L(x), F(x) and G(x) are difficult
to evaluate analytically, is examined in this study.

3. Polyhedral inclusion

The problem of an arbitrary-shape polyhedral inclusion in an infinite elastic body has been analytically studied by Rodin
(1996), Nozaki and Taya (2001) and Kuvshinov (2008) using classical elasticity. The Eshelby tensor for this problem is derived
here using the SSGET-based general formulas and a new method for evaluating the potential functions L(x), F(x) and G(x).

3.1. Eshelby tensor

Consider an arbitrarily shaped polyhedral inclusion embedded in an infinite homogeneous isotropic elastic material.
The polyhedral inclusion has p faces and is prescribed with a uniform eigenstrain e* and a uniform eigenstrain gradient jn.

The p-faced polyhedral domain occupied by the inclusion can be divided into tetrahedral duplexes originated from a chosen
(arbitrary) point x (Waldvogel, 1979; Rodin, 1996). Each duplex can be further divided into two simplexes, each of which is a
tetrahedron with three of its four faces being right triangles (see Fig. 1). The four vertices of each of the duplexes are, respectively,
the projection point of x on a polyhedral surface (i.e., xI), two adjacent vertices on this surface (i.e., VþJI and V�JI ), and the point x
itself. For each of these duplexes, a local Cartesian coordinate system is constructed, with point x being set as the origin. The three

orthogonal axes of the local coordinate system are denoted by l, Z and z, respectively. The coordinates of the two vertices

VþJI and V�JI on the Jth edge of the Ith surface are, respectively, given by ðbJI ; l
þ

JI ; aIÞ and ðbJI ,l
�

JI ,aIÞ, as shown in Fig. 2.

In Fig. 2, k0
JI , g0

JI and f0
I are the unit vectors associated with the local coordinates lJI, ZJI and zI, y is an arbitrary point on

the Jth edge of the Ith surface, r is the position vector of y relative to the origin x (i.e., r¼y�x), and rs
I is the projection of

r on the Ith surface. The usual Cartesian coordinates (x1, x2, x3) are used in the global coordinate system having (e1, e2, e3)
as the associated base vectors.
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To obtain the Eshelby tensor for the polyhedral inclusion using Eqs. (9a), (9b) and (9c), the three potential functions
F(x), L(x) and G(x) defined in Eqs. (10a), (10b) and (10c) are first evaluated over the polyhedral domain O using an
approach different from those employed in Rodin (1996), Nozaki and Taya (2001) and Kuvshinov (2008) for evaluating
F(x) and L(x) involved in the classical elasticity-based Eshelby tensor, as shown next.

For a sufficiently smooth function M(x�y), the use of the divergence theorem gives

@

@xk

ZZZ
O

MdVðyÞ ¼�
ZZZ

O

@M

@yk

dVðyÞ ¼�
Xp

I ¼ 1

ðz0
I Þk

ZZ
@OI

MdSðyÞ, ð13Þ

where p is the number of surfaces of the polyhedron, and ðz0
I Þk is the kth component of the unit outward normal vector on

the Ith surface @OI, f0
I .

To transform the surface integral in Eq. (13) to a contour (line) integral, let

M¼ ðr �mÞUf0
I , ð14Þ

where m is a yet-unknown vector located on the Ith surface of the polyhedron, and r�m denotes the curl of m. Using the
Stokes theorem then yields, upon applying Eq. (14),

ZZ
@OI

MdSðyÞ ¼
Xq

J ¼ 1

Z
CJI

mUg0
JIdl, ð15Þ

where g0
JI is the unit vector along the Jth boundary edge CJI of the Ith surface.

Now, write

m¼ f0
I �

rS
I

rS
I

gðrÞ

" #
, ð16Þ

x

x

xI

xI

VJI

VJI

VJI

VJI
�

�
�

Fig. 1. A polyhedron represented by duplexes: (a) a polyhedron (with five duplexes shown); (b) a duplex and the associated local coordinate system

constructed from an arbitrary point x.

e
e

x

x r

a

b

y

η

λ ζ

V

V

x

x

e

Fig. 2. A duplex with its base on the Ith surface and one local coordinate axis (Z) along the Jth edge of the Ith surface.
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where rS
I ð ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�a2

I

q
¼ 9rS

I 9Þ is the length of the projection of r on the Ith surface, and g(r) is a function of r (¼9r9) yet to be

determined. Substituting Eq. (16) into Eq. (15) leads toZZ
@OI

MdSðyÞ ¼
Xq

J ¼ 1

bJI

Z
CJI

gðrÞ

rS
I

dl, ð17Þ

where bJI � rS
I Uk

0
JI is the distance from point xI (the projection of point x on the Ith surface) to the Jth edge CJI (see Fig. 2). For

each specific function M, a different expression of g(r) and thus m can be determined, as shown next for the three cases
representing the integrands of the potential functions F(x), L(x) and G(x) defined in Eqs. (10a), (10b) and (10c).

For M¼r¼9y�x9 (corresponding to F(x)), Eqs. (14) and (16) gives

r¼ gðrÞ rU
rS

I

rS
I

 !
þ½rgðrÞ�U

rS
I

rS
I

, ð18Þ

where r is the gradient operator, and use has been made of the identity: a�b� c¼(a � c)b�(a �b)c, with a, b, c being
arbitrary vectors and ‘‘� ’’, ‘‘ � ’’ representing the cross, dot products, respectively. After carrying out the differentiation and
dot product operations, Eq. (18) can be further simplified to

r¼
gðrÞ

rS
I

þg0ðrÞ
rS

I

r
, ð19Þ

where g0(¼dg/dr) is the first derivative of g with respect to r. The solution of Eq. (19) reads

gFðrÞ ¼
r3�a3

I

3rS
I

, ð20Þ

where aI ð ¼ rUf0
I Þ is the distance from point x to the Ith surface (see Fig. 2), and gF(r) denotes the function g(r) for the case

with M¼r.
Similarly, it can be shown that
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when M¼1/r¼1/9y�x9 (corresponding to L(x)), and
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when M¼ e�r=L=r¼ e�9y�x9=L=9y�x9 (corresponding to G(x)).
Using Eqs. (13), (17), (20), (21) and (22) in Eqs. (10a), (10b) and (10c) then leads to, with the local coordinate axis Z

being along the Jth edge,
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where lþJI and l�JI are, respectively, the coordinates of the two vertices VþJI and V�JI on the Jth edge, with lþJI being positive and
l�JI negative (see Fig. 2).

The integrals in Eqs. (23) and (24) can be exactly evaluated by direct integration to obtain the following closed-form
expressions:
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Note that e�r/L can be written as a power series:
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Using Eq. (29) in Eq. (25) then leads to
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and F1 is the first Appell hypergeometric function of two variables given by

F1 a,b,c,d; x,yð Þ ¼
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m,n ¼ 0
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with (f)m being the Pochhammer symbol representing the following rising factorial:

ðf Þm ¼
Gðf þmÞ

Gðf Þ
¼ f ðf þ1Þðf þ2Þ � � � ðf þm�1Þ: ð33Þ

Note that Eqs. (26), (27) and (30) are applicable to both the interior case with x being inside the polyhedral inclusion
(i.e., xAO) and the exterior case with x being outside the inclusion (i.e., xeO). For the former aI is a positive value, while for
the latter aI is a negative value. The similarity and difference identified here between the interior and exterior cases can be
seen from Fig. 3, where how the duplex in each case is constructed is schematically shown.

It should be mentioned that no attempt is made here to obtain the expressions of the potential functions F(x), L(x) and
G(x) from Eqs. (26), (27) and (30), since only the second and/or fourth derivatives of these functions are involved in the
general expressions of the Eshelby tensor given in Eqs. (9a), (9b) and (9c).

Note that for a smooth function FðxÞ � FðaI ,bJI ,l
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where the parameters aI, bJI, lþJI , l�JI are related to x through
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Fig. 3. Duplex and parameters aI, bJI, lþJI , l�JI for (a) xAO and (b) xeO.
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l�JI ¼ ðv
�
k �xkÞðZ0

JIÞk, ð35dÞ

where xk, vþk and v�k are, respectively, the coordinates of the points x, VþJI and V�JI in the global coordinate system, and ðz0
I Þk,

ðl0
JIÞk and ðZ0

JIÞk are the components of the unit base vectors f0
I , k0

JI and g0
JI in the global coordinate system.

It then follows from Eqs. (34), (35a), (35b), (35c) and (35d) that
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Using Eqs. (26), (27), (30), (36a) and (36b) in Eqs. (9b) and (9c) will lead to the final expressions of the Eshelby tensor
for the p-faced polyhedral inclusion as
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In Eqs. (37b) and (37d), FJI
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1 Þ
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1 , ðLJI
1 Þ
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1 , ðGJI
1 Þ
þ and ðGJI

1 Þ
� are defined in Eqs. (28) and (31).

It should be mentioned that the classical part SC
ijkl in Eqs. (37a) and (37b) depends only on Poisson’s ratio v and cannot

account for the inclusion size effect, noting that FJI
1 , ðFJI

1 Þ
þ , ðFJI

1 Þ
�, LJI

1 , ðLJI
1 Þ
þ and ðLJI

1 Þ
� involved in Eq. (37b) do not contain

the material length scale parameter L (see Eq. (28)). However, the gradient part SG
ijkl in Eqs. (37c) and (37d) can capture the

inclusion size effect, since Eqs. (37c) and (37d) as well as the expressions of GJI
1 , ðGJI

1 Þ
þ and ðGJI

1 Þ
� (see Eq. (31)) contain the
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parameter L in addition to Poisson’s ratio v. Clearly, when L¼0 (i.e., in the absence of the strain gradient effect), SG
ijkl � 0

according to Eqs. (37c), (37d) and (31), thereby resulting in Sijkl ¼ SC
ijkl from Eq. (9a). That is, the SSGET-based Eshelby tensor

reduces to its counterpart based on classical elasticity when the strain gradient effect is not considered. Also, it is seen that
the expressions of the classical elasticity-based Eshelby tensor in Eqs. (37a), (37b) and (28) derived here are more compact
than those given in Nozaki and Taya (2001).

The expressions of the Eshelby tensor Sijkl in Eqs. (9a), (37a), (37b), (37c) and (37d) are derived for a p-faced polyhedral
inclusion of arbitrary shape. For simple-shape inclusions, more explicit expressions can be obtained for Sijkl.

3.2. Averaged Eshelby tensor

The volume average of the position-dependent Eshelby tensor, Sijkl, is given by

Sijkl ¼
1
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JI ,l�JI ÞdV , ð38Þ

where (SNM)ijkl is the Eshelby tensor at point x inside ONM presented in Eqs. (9a), (37a), (37b), (37c) and (37d), VO is the
volume of the polyhedral inclusion O, ONM is the region occupied by the duplex formed by the origin (point O) of the global
coordinate system, the projection of point O onto the Mth polygonal surface (i.e., OM) and two vertices on the Nth edge of
the Mth surface (i.e., VþNM and V�NM), and n is the number of edges on the Mth surface. Note that this duplex ONM is different
from that formed by point x, its projection onto the Ith polygonal surface (i.e., xI) and two vertices on the Jth edge of the Ith
surface (i.e., VþJI and V�JI ), as shown in Fig. 4.

For the NMth duplex ONM originated from point O, the local Cartesian coordinate system (lNM, ZNM, zM) can be chosen in a
way similar to what was done earlier (see Fig. 2). Then, the coordinates of the vertices of the duplex OJI on the Jth edge of the Ith

surface and of an arbitrary point x within the NMth duplex ONM in the (lNM, ZNM, zM) local coordinate system can be identified
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of the local coordinate system attached to the duplex OJI originated at x can be expressed in terms of the base vectors k0
NM , g0
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and f0
M . It then follows that the parameters for the duplex OJI can be determined as

aI ¼ ðv
JINMþ
k �xJINM

k Þðz0
I Þ

NM
k ¼ ðv

JINM�
k �xJINM

k Þðz0
I Þ

NM
k , ð39aÞ

bJI ¼ ðv
JINMþ
k �xJINM

k Þðl0
JIÞ

NM
k ¼ ðv

JINM�
k �xJINM

k Þðl0
JIÞ

NM
k , ð39bÞ

JIb

JIl
JIl

0
JIλ

Ix

x

Ia

0
NMλ

0
Mζ

η

O

O

ζ

η

VNM

VNM

VJI

VJI

+

+
+

-

- -

Fig. 4. Duplexes and the corresponding local coordinate systems constructed from an arbitrary point x and from the origin O of the global coordinate

system, respectively.
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lþJI ¼ ðv
JINMþ
k �xJINM

k ÞðZ0
JIÞ

NM
k , ð39cÞ

l�JI ¼ ðv
JINM�
k �xJINM

k ÞðZ0
JIÞ

NM
k , ð39dÞ

where ðl0
JIÞ

NM
k , ðZ0

JIÞ
NM
k and ðz0

I Þ
NM
k represent, respectively, the kth components of the unit vectors k0

JI , g0
JI and f0

I in the local

coordinate system (lNM, ZNM, zM) with the base vectors k0
NM , g0

NM and f0
M .

Using Eqs. (39a), (39b), (39c) and (39d) in Eq. (38) yields

Sijkl ¼
1

VO

Xp

M ¼ 1

Xn

N ¼ 1

Xp

I ¼ 1

Xq

J ¼ 1

ZZZ
ONM

ðSNMÞijkl½aIðlNM ,ZNM ,zMÞ, bJIðlNM ,ZNM ,zMÞ, lþJI ðlNM ,ZNM ,zMÞ, l�JI ðlNM ,ZNM ,zMÞ�dlNMdZNMdzM : ð40Þ

This general formula can be used for a polyhedral inclusion of arbitrary shape.
For a polyhedral inclusion that is symmetric about the global coordinate axes x1, x2 and x3, only one eighth of the

inclusion needs to be considered and the global coordinate system can be used in all computations. The one-eighth
polyhedral domain can be divided into several sub-polyhedra with their top and bottom surfaces parallel to the x1x2-plane,
and the volume integral over each sub-domain can be evaluated by direct integration using the global coordinate system.
Also, only the global coordinates of all vertices need to be determined, and the unit vectors k0

JI , g0
JI and f0

I in the local
coordinate system can be expressed in terms of the base vectors (i.e., e1, e2, e3) in the global coordinate system. As a result,
Eq. (40) can be simplified to

Sijkl ¼
8

VO

Xt

T ¼ 1

Xp

I ¼ 1

Xq

J ¼ 1

ZZZ
OT

ðST Þijkl½aIðx1,x2,x3Þ, bJIðx1,x2,x3Þ, lþJI ðx1,x2,x3Þ, l�JI ðx1,x2,x3Þ�dx1dx2dx3, ð41Þ

where t is the number of sub-polyhedra in the one eighth of the polyhedral inclusion, and (ST)ijkl is the Eshelby tensor at
point x inside OT given in Eqs. (9a), (37a), (37b), (37c) and (37d).

4. Numerical results

To illustrate the general formulas of the Eshelby tensor for a p-faced polyhedral inclusion of arbitrary shape derived in
Section 3, three types of polyhedral inclusions (i.e., cubic, octahedral and tetrakaidecahedral) shown in Fig. 5 are
quantitatively studied in this section. Cuboids are the first polyhedral inclusions investigated using classical elasticity (e.g.,
Chiu, 1977; Lee and Johnson, 1978; Liu and Wang, 2005). A tetrakaidecahedron can be generated by uniformly truncating
the six corners of an octahedron and is known to be the only polyhedron that can pack with identical units to fill space and
nearly minimize the surface energy (e.g., Li et al., 2003). Tetrakaidecahedral cells have been frequently used to represent
foamed materials and interpenetrating phase composites (e.g., Li et al., 2003, 2006; Jhaver and Tippur, 2009).

Two components, S1111 and S1212, of the Eshelby tensor at any point x inside each polyhedral inclusion with various
sizes are evaluated using Eqs. (9a), (37a), (37b), (37c), (37d), (28) and (31) and plotted to demonstrate how the
components change with the position and inclusion size. Also, how the average Eshelby tensor component S1111 varies
with the inclusion size is presented here, which is computed using Eq. (41). For illustration purposes, Poisson’s ratio v is
taken to be 0.3 and the material length scale parameter L to be 17.6 mm in the current numerical analysis, as was done
earlier (Gao and Ma, 2009, 2010a,b; Ma and Gao, 2010, 2011).

The distributions of S1111 for the cubic, octahedral, and tetrakaidecahedral inclusions along the x1 axis predicted by the
current model are shown in Figs. 6–8, where the values of SC

1111 are also displayed for comparison.
It can be seen from Figs. 6–8 that the classical part SC

1111 (based on classical elasticity) varies with the position of x
within each polyhedral inclusion rather than uniform, which shows that the Eshelby conjecture is true for the three
polyhedral inclusion shapes considered here. Also, it is found that for each of the three inclusion shapes SC

1111 at a given
value of x1/R is the same for all values of R/L, confirming the inclusion size-independence of the classical part of the
Eshelby tensor, which is noted near the end of Section 3.1. In addition, for all three polyhedral inclusion shapes considered,
it is observed from Figs. 6–8 that when the characteristic inclusion size R (see Fig. 5) is small (compared to the length scale

x1

x2

x3

o

2R

x1

x2

x3

o

2R

x3

x2

x1
2R o

Fig. 5. Three types of polyhedral inclusions: (a) cubic, (b) octahedral and (c) tetrakaidecahedral.
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parameter L, e.g., R/L¼2), the strain gradient part SG
1111, which is the difference between S1111 and SC

1111 (i.e., SG
1111 ¼

S1111�SC
1111) and is displayed as the vertical distance between the SC

1111 curve and each S1111 curve in Figs. 6–8, is significant
and should not be neglected. However, as the inclusion size becomes larger, the values of S1111 are all getting closer to
those of SC

1111. This means that the inclusion size effect is less significant and may be ignored for large inclusions in some
cases, which agrees with the general trend observed experimentally (e.g., Cho et al., 2006).

The change of S1212 with the position and inclusion size is illustrated in Figs. 9–12 together with a comparison with
SC

1212 for the three types of polyhedral inclusions. Clearly, SC
1212 varies with the position of x inside each polyhedral

inclusion, which differs from that in an ellipsoidal inclusion and supports the Eshelby conjecture. But the classical part
SC

1212 at a given value of x1/R remains the same for all inclusion sizes, as expected from the discussion in Section 3.1.

Fig. 7. Variation of S1111 along the x1 axis inside the octahedral inclusion: (a) R¼2L, (b) R¼4L and (c) R¼6L, with R being half of the edge length

(see Fig. 5(b)).

Fig. 6. Variation of S1111 along the x1 axis inside the cubic inclusion: (a) R¼2L, (b) R¼4L and (c) R¼6L, with R being half of the edge length (see Fig. 5(a)).

Fig. 8. Variation of S1111 along the x1 axis inside the tetrakaidecahedral inclusion: (a) R¼2L, (b) R¼4L and (c) R¼6L, with R being half of the cell height

(see Fig. 5(c)).

Fig. 9. Variation of S1212 along the x1 axis inside the cubic inclusion: (a) R¼2L, (b) R¼4L and (c) R¼6L, with R being half of the edge length (see Fig. 5(a)).
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The gradient part SG
1212, as the difference between S1212 and SC

1212 (i.e., SG
1212 ¼ S1212�SC

1212), is seen to be significantly large
for small inclusions (e.g., R/L¼2) and becomes insignificant for large inclusions for all three types of polyhedral inclusions.
More specifically, it is observed from Fig. 9 that for the cubic inclusion the strain gradient effect, as measured by the value
of SG

1212, is large for all inclusion sizes when x1/R40.6. For the octahedral inclusion, the strain gradient effect is
insignificant and can be neglected when R/L44, as illustrated in Fig. 10. For the tetrakaidecahedral inclusion, Fig. 11 shows
that the strain gradient effect is also small, especially in the region away from the square faces.

The component S1111 of the averaged Eshelby tensor varying with the inclusion size is shown in Fig. 12 for the three
inclusion shapes, where S

C

1111 is also displayed for comparison. The values of S1111 shown in Fig. 12 are obtained using Eqs.
(41) and (39a), (39b), (39c) and (39d), which are also applied to get the values of S

C

1111 with L-0.
It can be seen from Fig. 12 that for each polyhedral inclusion S

C

1111 (based on classical elasticity) is a constant

independent of the inclusion size R. However, S1111 predicted by the current model based on the strain gradient elasticity
theory does vary with the inclusion size: the smaller the inclusion, the smaller the Eshelby tensor component. In

particular, when the inclusion is small, the strain gradient effect, as measured by S
G

1111ð ¼ S1111�S
C

1111Þ, is significantly large

and should not be ignored. As the inclusion becomes large, S1111 approaches S
C

1111 from below, indicating that the strain

gradient effect gets small and may be neglected for very large inclusions.
The observations made here are also true for the other components of the Eshelby tensor Sijkl in Eqs. (9a), (37a), (37b),

(37c), (37d), (28) and (31) and its volume average Sijkl in Eq. (41).
From the numerical results presented above, it is clear that the newly obtained Eshelby tensor based on the SSGET can

capture the inclusion size effect at the micron scale, while the Eshelby tensor based on classical elasticity does not have
this capability.

5. Conclusions

An analytical solution is provided for the Eshelby-type problem of an arbitrarily shaped polyhedral inclusion embedded
in an infinite elastic matrix using a simplified strain gradient elasticity theory (SSGET) that contains one material length
scale parameter in addition to two classical elastic constants. The SSGET-based Eshelby tensor for a polyhedral inclusion of
arbitrary shape is analytically derived in a general form in terms of three potential functions, two of which are the same as
the ones involved in the Eshelby tensor based on classical elasticity. These potential functions, as three volume integrals
over the inclusion, are evaluated by dividing the polyhedral inclusion domain into tetrahedral duplexes. Each of the three
volume integrals is first transformed to a surface integral by applying the divergence theorem, which is then transformed
to a contour (line) integral based on Stokes’ theorem and using an inverse approach that differs from those employed in
the existing studies based on classical elasticity. The newly obtained Eshelby tensor is separated into a classical part and a
gradient part. The classical part depends only on Poisson’s ratio of the matrix material, while the gradient part depends on

Fig. 10. Variation of S1212 along the x1 axis inside the octahedral inclusion: (a) R¼2L, (b) R¼4L and (c) R¼6L, with R being half of the edge length (see

Fig. 5(b)).

Fig. 11. Variation of S1212 along the x1 axis inside the tetrakaidecahedral inclusion: (a) R¼2L, (b) R¼4L and (c) R¼6L, with R being half of the cell height

(see Fig. 5(c)).
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both Poisson’s ratio and the material length scale parameter that enables the explanation of the inclusion size effect. This
SSGET-based Eshelby tensor reduces to its counterpart based on classical elasticity when the strain gradient effect is not
considered. A general form of the volume averaged Eshelby tensor over the polyhedral inclusion is also obtained, which
can be used in homogenization analyses of composites containing polyhedral inclusions.

To demonstrate the newly derived Eshelby tensor, three types of polyhedral inclusions, cubic, octahedral and tetra-
kaidecahedral, are analyzed by directly applying the general formulas. The numerical results reveal that for each of the three
inclusion shapes the components of the new Eshelby tensor change with the position and inclusion size, whereas their classical
elasticity-based counterparts only vary with the position. When the inclusion is small, the gradient part is seen to contribute
significantly and should not be ignored. Also, it is found that the smaller the inclusion size is, the smaller the components of the
volume-averaged Eshelby tensor are. These components approach from below the values of their classical elasticity-based
counterparts as the inclusion size becomes large. Hence, the inclusion size effect may be neglected for large polyhedral
inclusions in some cases.
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Fig. 12. Variation of S1111 with the inclusion size: (a) cubic, (b) octahedral and (c) tetrakaidecahedral.

X.-L. Gao, M.Q. Liu / J. Mech. Phys. Solids 60 (2012) 261–276 275



References

Ammari, H., Capdeboscq, Y., Kang, H., Lee, H., Milton, G.W., Zribi, H., 2010. Progress on the strong Eshelby’s conjecture and extremal structures for the
elastic moment tensor. J. Math. Pures Appl. 94, 93–106.

Chiu, Y.P., 1977. On the stress field due to initial strains in a cuboid surrounded by an infinite elastic space. ASME J. Appl. Mech. 44, 587–590.
Cho, J., Joshi, M.S., Sun, C.T., 2006. Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos. Sci.

Technol. 66, 1941–1952.
Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London A 241, 376–396.
Eshelby, J.D., 1959. The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. London A 252, 561–569.
Eshelby, J.D., 1961. Elastic inclusions and inhomogeneities. In: Sneddon, I.N., Hill, R. (Eds.), Progress in Solid Mechanics, vol. 2. North-Holland,

Amsterdam, pp. 89–140.
Gao, X.-L., Ma, H.M., 2009. Green’s function and Eshelby’s tensor based on a simplified strain gradient elasticity theory. Acta Mech. 207, 163–181.
Gao, X.-L., Ma, H.M., 2010a. Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite

spherical matrix based on a simplified strain gradient elasticity theory. J. Mech. Phys. Solids 58, 779–797.
Gao, X.-L., Ma, H.M., 2010b. Strain gradient solution for Eshelby’s ellipsoidal inclusion problem. Proc. R. Soc. A 466, 2425–2446.
Gao, X.-L., Park, S.K., 2007. Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled

cylinder problem. Int. J. Solids Struct. 44, 7486–7499.
Gao, X.-L., Rowlands, R.E., 2000. Hybrid method for stress analysis of finite three-dimensional elastic components. Int. J. Solids Struct. 37, 2727–2751.
Glas, F., 2001. Elastic relaxation of truncated pyramidal quantum dots and quantum wires in a half space: an analytical calculation. J. Appl. Phys. 90,

3232–3241.
Jhaver, R., Tippur, H., 2009. Processing, compression response and finite element modeling of syntactic foam based interpenetrating phase composite

(IPC). Mater. Sci. Eng. A 499, 507–517.
Kuvshinov, B.N., 2008. Elastic and piezoelectric fields due to polyhedral inclusions. Int. J. Solids Struct. 45, 1352–1384.
Lee, J.K., Johnson, W.C., 1978. Calculation of the elastic strain field of a cuboidal precipitate in an anisotropic matrix. Phys. Status Solidi (a) 46, 267–272.
Li, K., Gao, X.-L., Roy, A.K., 2003. Micromechanics model for three-dimensional open-cell foams using a tetrakaidecahedral unit cell and Castigliano’s

second theorem. Compos. Sci. Technol. 63, 1769–1781.
Li, K., Gao, X.-L., Subhash, G., 2006. Effects of cell shape and strut cross-sectional area variations on the elastic properties of three-dimensional open-cell

foams. J. Mech. Phys. Solids 54, 783–806.
Li, S., Wang, G., 2008. Introduction to Micromechanics and Nanomechanics. World Scientific, Singapore.
Liu, L.P., 2008. Solutions to the Eshelby conjectures. Proc. R. Soc. A 464, 573–594.
Liu, S., Wang, Q., 2005. Elastic fields due to eigenstrains in a half-space. ASME J. Appl. Mech. 72, 871–878.
Lubarda, V.A., Markenscoff, X., 1998. On the absence of Eshelby property for non-ellipsoidal inclusions. Int. J. Solids Struct. 35, 3405–3411.
Ma, H.M., Gao, X.-L., 2010. Eshelby’s tensors for plane strain and cylindrical inclusions based on a simplified strain gradient elasticity theory. Acta Mech.

211, 115–129.
Ma, H.M., Gao, X.-L., 2011. Strain gradient solution for a finite-domain Eshelby-type plane strain inclusion problem and Eshelby’s tensor for a cylindrical

inclusion in a finite elastic matrix. Int. J. Solids Struct. 48, 44–55.
Marcadon, V., Herve, E., Zaoui, A., 2007. Micromechanical modeling of packing and size effects in particulate composites. Int. J. Solids Struct. 44,

8213–8228.
Markenscoff, X., 1998a. On the shape of the Eshelby inclusions. J. Elasticity 49, 163–166.
Markenscoff, X., 1998b. Inclusions with constant eigenstress. J. Mech. Phys. Solids 46, 2297–2301.
Michelitsch, T.M., Gao, H., Levin, V.M., 2003. Dynamic Eshelby tensor and potentials for ellipsoidal inclusions. Proc. R. Soc. London A 459, 863–890.
Mura, T., 1987. Micromechanics of Defects in Solids, second ed. Martinus Nijhoff, Dordrecht.
Nemat-Nasser, S., Hori, M., 1999. Micromechanics: Overall Properties of Heterogeneous Materials, second ed. Elsevier Science, Amsterdam.
Nenashev, A.V., Dvurechenskil, A.V., 2010. Strain distribution in quantum dot of arbitrary polyhedral shape: analytical solution. J. Appl. Phys. 107,

064322-1–064322-8.
Nozaki, H., Taya, M., 2001. Elastic fields in a polyhedral inclusion with uniform eigenstrains and related problems. ASME J. Appl. Mech. 68, 441–452.
Pearson, G.S., Faux, D.A., 2000. Analytical solutions for strain in pyramidal quantum dots. J. Appl. Phys. 88, 730–736.
Poniznik, Z., Salit, V., Basista, M., Gross, D., 2008. Effective elastic properties of interpenetrating phase composites. Comput. Mater. Sci. 44, 813–820.
Rodin, G.J., 1996. Eshelby’s inclusion problem for polygons and polyhedra. J. Mech. Phys. Solids 44, 1977–1995.
Rowlinson, J.S., 1989. The Yukawa potential. Physica A 156, 15–34.
Timoshenko, S.P., Goodier, J.N., 1970. Theory of Elasticity, third ed. McGraw-Hill, New York.
Vollenberg, P.H.T., Heikens, D., 1989. Particle size dependence of the Young’s modulus of filled polymers: 1. Preliminary experiments. Polymer 30,

1656–1662.
Waldvogel, J., 1979. The Newtonian potential of homogeneous polyhedra. Z. Angew. Math. Phys. 30, 388–398.
Wang, J., Michelitsch, T.M., Gao, H., Levin, V.M., 2005. On the solution of the dynamic Eshelby problem for inclusions of various shapes. Int. J. Solids Struct.

42, 353–363.

X.-L. Gao, M.Q. Liu / J. Mech. Phys. Solids 60 (2012) 261–276276


	Strain gradient solution for the Eshelby-type polyhedral inclusion problem
	Strain gradient solution for the Eshelby-type polyhedral inclusion problem
	Introduction
	Eshelby tensor based on the SSGET
	Polyhedral inclusion
	Eshelby tensor
	Averaged Eshelby tensor

	Numerical results
	Conclusions
	Acknowledgments
	References


